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Abstract

Firm growth and expansion is widely believed to be guided by the desire to leverage
existing resources. But which resources? The answer depends largely on context—the
peculiarities of industries, firms, technologies, production, customers, and a host of other
dimensions. This fact makes pointing to any particular set of resources as the source of
expansion decisions potentially problematic and makes more difficult tests of theories such as
the resource-based view of the firm. This paper tackles the problem by developing a general
inter-industry relatedness index that can be usefully applied across industry and firm contexts.
The index harnesses the relatedness information embedded in the multi-product organization and
diversification decisions of every firm in the US manufacturing economy. The index is general in
that it implicitly varies the underlying resources upon which expansion proceeds with the
industries in question and provides a percentile relatedness rank for every possible pair of four-
digit SIC manufacturing industries. The general index is tested for predictive validity and found
to perform as expected. Applications of the index in strategy research are suggested. 
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If there are profitable opportunities for increased production anywhere in the 
economy they will provide for some firm an external inducement to expand. But this 
alone tells us nothing about their significance for any given firm. [Opportunities] are 
external inducements to expand only for what might be termed ‘qualified’ firms—
firms whose internal resources are of a kind either to give them a special advantage 
in the ‘profitable’ areas or a least not to impose serious obstacles (Penrose, 
1959/1995:86). 
 

1. INTRODUCTION 

Profitable expansion opportunities are not uniformly available to all firms. Whether a particular 

opportunity has profit potential for a particular firm is determined in part by the firm’s stock of resources, 

either already present or assumable, by which it takes advantage of the opportunity (Penrose, 1959). Thus, 

the question of predicting which opportunities a firm pursues in expansion is answered by first addressing 

the question of which resources are to be leveraged. If a theoretical commitment can be made to a class of 

resources upon which expansion decisions are expected to be carried out, then the operational problem of 

“which resources” is reasonably straightforward. But if the specific resources relevant to expansion are 

unknown, difficult to identify, or are expected to change with the opportunity, firm, or industry context, 

then the problem of resource identification is considerably more complicated. This latter situation arises 

frequently in broad-based studies of diversification where heterogeneous industries are present in the 

portfolios of firms under study. Strategy scholars examining the resource based view of the firm 

(Wernerfelt, 1984; Barney, 1991) have often bounded analysis within homogeneous populations, such as 

technology firms (e.g. Silverman, 1999), in order to circumvent the complication. 

In this paper we propose a remedy by developing a general relatedness index that can be usefully 

employed to examine firm expansion decisions across industry and firm contexts. The index is general in 

that it implicitly varies the underlying resources upon which expansion proceeds with the industries in 

question and provides a percentile relatedness rank for every possible pair of manufacturing industries. 

Our index harnesses the relatedness information embedded in the multi-product organization and 

diversification decisions of every firm in the US manufacturing economy for the specific time period on 
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which it is based.1 In contrast, the most common traditional measures of relatedness or diversification, 

such as the concentric index or the entropy measure, infer relatedness from the hierarchical structure of 

the Standard Industrial Classification (SIC) system. Our index uses the SIC system only to categorize 

industrial activity at the most micro level, which we take to be the 4-digit level. The methodology could 

be applied to any system that provides an exhaustive classification of activity at whatever is considered to 

be the micro level, and to any time period for which the requisite data are available.  

Patterns of corporate diversification are, we assume, shaped in a fundamental way by a logic of 

economic efficiency. Opportunities for profitable diversification moves arise because there is some 

overlap between the resources and capabilities that support the existing portfolio of activities and those 

that are required in some new line of activity. Such overlaps produce “economies of scope” – a term that 

we use in a broad sense to cover any and all sources of economic gains arising from the combination of 

disparate activities in a single firm. We generally presume that such “scope economies” arise in the most 

fundamental and durable sense from non-rivalrous information that is valuable in two or more different 

activities. Unlike an amount of underutilized productive capacity of a particular type, or a relationship 

with a particular distributor whose capacity is limited, underutilized knowledge is leverageable to an 

indefinite extent. There is no limit to its application that is intrinsic to its own nature, though of course the 

environment may impose such limits. Our methods do not, however, rely specifically on the assumption 

that economies of scope have this knowledge-based character.  

At any given time, the patterns of corporate participation in different industries reflect the 

cumulative effect of the operation of this efficiency logic in the past – along, of course, with whatever 

other causal determinants and random effects may be involved. On this basis, our methodology may be 

viewed as relying upon the survivor principle in that it presumes that what firms actually do makes 

economic sense. Thus, if a firm is observed to be participating in both industry A and industry B, the 

observation supports the inference that A and B are “related.” It makes some kind of economic sense for 

the firm to be doing that (Teece, et al. 1994), and the economy-wide implication of such firm-level sense 
                                                 
1 Every firm down to a size of three employees. 
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is what our index seeks to capture. As originally stated by Stigler (1968:73) the survivor principle is that 

“the competition of different sizes of firms sifts out the more efficient enterprises.” 2   In relying on this 

principle, we do not presume that it operates with great promptness or precision. Rather, we presume that 

the economic forces shaping the observed reality are diverse both qualitatively and quantitatively. Other 

causal forces, random effects and organizational inertia may certainly shape the observations when the 

economic forces when are weak – but this is not so likely, we assume, when they are strong. 

Since the starting point of our approach is instances of firm participation in two industries, this 

work is plainly related to the much-discussed question of firm boundaries or “the nature of the firm” 

(Coase 1937). We assume that the observation that a firm engages in activities A and B does not merely 

suggest the existence of affirmative economic reasons for this combination (i.e., relatedness), but also that 

standing objections to such combinations were overcome in this case. Regarding the specific nature of 

those “standing objections,” we do not make, and do not require, any specific commitment. Certainly the 

literature of transaction cost economics offers valuable insights on this matter (e.g., Coase 1937; 

Williamson 1985).  Certainly we agree that the fundamental question that Coase derived from Lenin – 

“Why is the economy not run as one big factory?” (Coase 1991)  – must have an economic answer.  We 

do suspect, however, that the historical paths of capability development in firms may have more to do 

with that answer than transaction cost theorizing seems to allow. In any case, we conjecture that the 

absence of any instance of a firm that does both C and D also makes some kind of economic sense; the 

question, again, is how controlling the durable economic forces actually are. 

The predictive value of our index rests on the premise that the methodology captures fundamental 

aspects of relatedness among industries, so that the relatedness score it generates is accounted for by 

relatively durable considerations. In reference to the time period from which it is inferred, it is of course 

tautological to observe that participation patterns reflect “relatedness” as measured by the index. But in 

reference to subsequent time periods, the durable features of knowledge structure reflected by the 

relatedness score remain. If we are correct that the index captures such features, it can be used both as a 
                                                 
2  
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reference standard for relatedness content between industries and as a predictive tool in those settings. 

(Needless to say, there is no example of quantitative prediction in the domain of science that does not rely 

on an assumption that something-or-other measured at one time is still holding that same value at a later 

time.) 

To test the predictive validity of the measure, we employ a more conservative test than is 

represented by examining the direction of corporate diversification directly. Using knowledge-based 

theorizing, we argue that our index should predict the mode of entry of an expanding firm. The test is a 

demanding one in that it requires the index to distinguish between acquisition and organic expansion 

rather than simply showing that there is high relative relatedness between activities in the firm’s portfolio 

and the industries the firm actually enters.  

The index is applicable to a wide range of problems in strategic management, corporate finance, 

and economics since it provides a plausible measure, grounded in an economic efficiency logic,of the 

relative strength of associations between every pair of industries.. Applications of the measure to the 

study of longitudinal patterns of diversification and firm growth are especially promising because the 

measure allows consideration of new industries one industry at a time. Intra-portfolio distances are easy to 

compare and the relatedness distance of an activity outside of the firm is readily assessable. The index 

lends itself particularly well to examining incremental entry or investment decisions by firms in the 

context of activities already in the portfolio. The index is not, however, a measure of diversification and 

so cannot be directly compared to extant diversification measures. The familiar diversification measures 

are portfolio-level constructs that typically include a crude relatedness component; relatedness measures 

are used to characterize a more fine-grained relationship between classes of activities.  

The “coherence” methodology of Teece et al. (1994) forms the effective starting point for 

development of the general index. That methodology, however, was not intended to produce a general 

inter-industry relatedness measure and it therefore has limitations that must be circumvented when it is 

applied for this purpose. That approach does not, for example, consider the relative importance of 
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activities in a corporate portfolio, instead treating all activities as significant if they appear in the portfolio 

at all. This is an issue particularly for broadly diversified firms with widely differing participation levels 

in a variety of industries. The Teece et al. methodology also poorly distinguishes the level of relatedness 

between industries that are not combined in any firm. These and other issues are resolved in this paper. 

The discussion proceeds as follows. Section two reviews the literature and highlights differences 

between measures of relatedness and diversification. Section three outlines some methodological hurdles 

in developing a general index and proposes solutions. Section four develops the index. Section five offers 

the test of predictive validity and Section six concludes. 

  

2. DIVERSIFICATION AND RELATEDNESS  

 The concept of relatedness in strategy research was first employed to assess the linkage between 

diversification strategy and performance proposed by Chandler (1962). Building on Chandler, 

developments in strategic management have emphasized that firm portfolios in which businesses are 

interrelated should produce higher levels of performance than portfolios in which businesses are unrelated 

(Rumelt, 1974; Montgomery, 1979; Rumelt, 1982; Teece, 1980, 1982; Ramanujam and Varadarajan, 

1989). The hypothesis is that combinations of related activities are expected to produce economies of 

scope in production (Teece, 1982; Panzar and Willig, 1981). These economies are an important potential 

source of performance differences between firms that pursue strategies of related diversification versus 

unrelated diversification. Since diversification strategy is an aggregate construct, however, relatedness is 

typically assessed at the aggregate portfolio level, with differing levels of inter-activity relatedness within 

the company being combined through some explicit or implicit weighting scheme. Accordingly, the most 

commonly used measures of diversification contain at least two components: (1) A component that 

assesses the degree of relatedness among activities; and (2) a component that weights activities, providing 

greater weight to activities accounting for a relatively greater proportion of the business.3  

                                                 
3 Some argue that the number of businesses should also be included (e.g. Gort, 1962). Lubatkin, Merchant, and 
Srinisvasan (1993), for example, showed that product count measures of diversification correlate strongly to the 
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A number of methods have been developed to assess diversification strategies along these lines, 

beginning with the Wrigley-Rumelt categorizations of diversification type (Wrigley, 1970; Rumelt, 1974; 

Montgomery, 1979). Categorical measures consider a related-diversified firm to be a firm whose largest 

single group of related businesses (as assessed by researcher judgment) accounts for seventy percent or 

more of revenues. Measures that have a long history of use in industrial organization economics (to 

measure the concentration of sales among firms in an industry) have been adapted to assess the 

concentration of a single firm’s activities among industrial categories. The most familiar measure of this 

type is the Herfindahl index; which was employed in the diversification context by Berry (1971). Such a 

measure addresses the relatedness of a firm’s activities only in the limited sense that for a given system of 

categories, within-category relatedness of activities is assumed to be perfect, while between-category 

relatedness is always zero. Gollop and Monihan (1991) proposed a “generalized index of diversification” 

that involved a modification of the Herfindahl index to reflect relatedness in a more sensitive way by 

directly incorporating a component measuring heterogeneity in product input shares.4 A similar 

development occurred with another measure familiar in the industrial concentration context, the entropy 

measure.5 As used in the diversification literature, the entropy measure (Jacquemin and Berry, 1979; 

Palepu, 1985; Hoskisson, et. al, 1993) assesses aggregate relatedness by computing total diversification at 

the four-digit SIC level and then subtracting diversification computed at the two-digit SIC level, resulting 

in a related component or ‘related entropy’ that is based on the proportion of businesses that share the 

same two-digit class (Jacquemin and Berry, 1979). Like other methods, the entropy measure contains an 

explicit mechanism that gives greater weight to more significant activities. 

                                                                                                                                                             
measures considered here. Nevertheless, most measures implicitly include product counts but make the weighting 
issue the predominant consideration.  
4 Gollop and Monihan’s (1991) heterogeneity component is derived by comparing vectors of 10 input shares to 
assess five-digit product diversification at the plant level. Inputs include production workers, other labor, fuel, 
electricity, purchased services, agricultural materials, mineral inputs, nondurable materials, durable materials, and 
capital. 
5 When individual shares are si, the standard calculation for entropy is −Σ si ln(si).  This value is subtracted from one 
to give a concentration or diversification index qualitatively similar to the Herfindahl.   
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The concentric index (e.g., Caves, Porter, and Spence, 1980; Montgomery and Hariharan, 1991; 

Montgomery and Wernerfelt, 1988) contains a relatedness component based on the SIC system hierarchy. 

It is computed by first taking the product of shares of sales for each pair of businesses at the bottom level 

of the hierarchy and then multiplying that result by a digit representing the relationship between the two 

businesses in the SIC system. This digit takes on a value of 0 when the businesses are in the same three-

digit category, a value of 1 when they belong to the same two-digit group but different three-digit groups, 

and a value of 2 when they are in different two-digit categories. Thus, like the Jacquemin and Berry 

(1979) measure based on entropy, concentric index relatedness is inferred directly from the hierarchical 

structure of the SIC system (See Table 1 for a summary of common diversification measures).  

 

-------------------------------------------Insert Table 1 about here --------------------------------------- 

 

In contrast to diversification measures which operate at the portfolio level, relatedness measures 

are designed to assess the relationship between two activity classifications and are therefore directly 

useful at the activity level. Relatedness measures are thus typically used as a component in a 

diversification construct in order to assess a portfolio-level strategy. In the case of the concentric index, 

for example, the measure is simply a weighting on intra-portfolio relatedness distances.6   

Established diversification constructs typically depend on relatively crude measures of 

relatedness. This may account, in part, for challenges that they’ve received to construct validity, where it 

has been shown that relatedness effects are confounded with other features of the portfolio such as the 

number of businesses or size of the dominant business (Robins and Wiersema, 2003; Sambharya, 2000). 

For instance, the concentric index relatedness component offers only three possible values—0, 1, or 2 

based on SIC hierarchy—certainly not a fine-grained assessment. Entropy relatedness is similarly limited. 

To compare the relatedness between two activities using the implicit two-digit versus four-digit 

                                                 
6 As will be seen below, our approach uses weighting in development of the relatedness measure itself by assigning 
greater weights to activity pairs that constitute a greater portion of a firm’s output.    
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diversification in the entropy measure, one would simply ask whether the activities share the same two-

digit class. Answers are either yes (1) or no (0).  

Importantly, relatedness components in standard diversification measures cannot effectively serve 

as stand-alone, general relatedness indices because the hierarchical structure of the SIC system does not 

represent an underlying relatedness scale.7 Much of the SIC system reflects, for historical reasons, a 

broad logic of vertical structure and primary raw material. Thus, for example, functionally substitutable 

products made of steel, aluminum and plastic appear in different two-digit industries because of the 

underlying difference in primary feed stock. For other two-digit categories, and at finer classification 

levels, end-use plays a more significant conceptual role (electrical equipment, or apparel, for example). 

Ultimately, the fact that two four-digit industries share the same three-digit code and on up the line gives 

us no clear message about strategically significant relationships among activities. Relatedness simply 

cannot be reliably or directly inferred from the hierarchical structure of the SIC system (cf. Davis and 

Duhaime, 1992; Robins and Wiersema, 1995). A possible alternative to SIC hierarchy-based relatedness 

is the categorical method of relatedness identification based on researcher judgment (e.g. Rumelt, 1974). 

However, these methods apply a portfolio-level, not activity-level category designation. It is also open to 

possible bias due to the subjective nature of the relatedness judgments, which may lead different 

researchers to place the same firms in different diversification categories (Chatterjee and Blocher, 1992). 

At the same time, fine-grained assessments of relatedness are crucial to empirically examining 

emerging strategy theory in areas such as the resource based view (Peteraf, 1993; Barney, 1991; 

Wernerfelt, 1984), organizational economics (e.g., Teece, 1980, 1982), and knowledge and capabilities 

(e.g., Winter, 2003, 1987; Helfat, 2000; Dosi, Nelson, and Winter, 2000; Teece, Pisano, and Shuen, 1997; 

Grant, 1996; Kogut and Zander, 1992). Empirical examination of these theoretical views requires the 

researcher to assess the degree of overlap, knowledge, or relatedness between one firm activity and 

another. For example, knowledge- and relatedness-based theorizing is used in discussions of how firms 

                                                 
7 Gollop and Monihan’s (1991) approach is more general and fine-grained than other approaches in that it uses the 
Euclidean distance between input shares to compute its relatedness component. However, this approach is highly 
production-centric and may therefore fail to capture broader notions of strategic relatedness or managerial logic.  

8 



search for new market-entry opportunities that allow the firms to economize on existing resources and 

knowledge as they build new capabilities (Bryce, 2003; Coff, 1999; Silverman, 1999; Teece, 1980, 1982); 

how capability evolution is built on sequences of decisions that are made in the context of resources 

already in hand (Helfat and Raubitschek, 2000; Helfat and Lieberman, 2002); or how the ability (owing to 

relatedness) to share firm-specific resources results in higher levels of firm performance (Teece, 1982; 

Petaraf, 1993; Mahoney and Pandian, 1992; Teece, Pisano, and Shuen, 1997).  

Recent research requiring relatedness measures typically identifies a class of resources to be 

leveraged, develops a specific relatedness measure for the purpose, and then shows how firm expansion 

choices are related to that class, whether patents (Silverman, 1999), technology flows (Robins and 

Wiersema, 1995), human resource categories (Chang, 1992; Farjoun, 1990, 1994; Coff, 1999), or other 

areas. However, the identification of particular resource classes as the source of expansion may gain the 

power of specificity at the cost of generality, since the resources on which economies of scope are based 

can change with the firm or industry context in question. A summary of recent developments in 

relatedness measures is included in Table 2.  

 

-------------------------------------------Insert Table 2 about here --------------------------------------- 

 

3. Issues in developing a general relatedness index 
 

The foregoing discussion suggests that a general measure of relatedness should meet at least the 

following four criteria.8 The index should  

(1) capture economies of scope in the large sense, without bias toward a particular economizing 
dimension; 

(2) allow the underlying sources of such economies to vary among industries; 
(3) forego reliance on the hierarchy of the SIC system for determining relatedness; and 

                                                 
8 These criteria form an important subclass to the criteria for a diversification measure proposed by Gollop and 
Monihan (1991).  Whereas Gollop and Monihan’s criteria address diversification in general and include a criterion 
for relatedness, the criteria suggested here are for the relatedness measure itself. 
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(4) accommodate managerial logics for relatedness that may exist outside of obvious economizing 
motivations. 

 
The measure should also preferably be continuous, rather than categorical.  

As discussed previously, our approach relies on the survivor principle, and thereby responds 

appropriately to criteria (1) and (2). This eliminates the need to specify the precise basis of relatedness 

between any two industries since relatedness is inferred from the extent to which companies choose to 

combine the industries in their portfolios. Criterion (3) is satisfied because the method assesses 

relatedness without in any way invoking the SIC’s hierarchical structure. The SIC system is used here 

only to categorize activity at the most micro level. Criterion (4) is addressed implicitly by building the 

index on a census of all firms in the US manufacturing economy down to firms with three employees. The 

importance of criterion (4) is suggested by the work of Stimpert and Duhaime (1997) and Pehrsson 

(2006), who have shown that conceptualizations of relatedness are multidimensional by analyzing 

managers’ answers to a series of questions about the relationships between their businesses. The 

Herfindahl and entropy measures are strongly correlated to product market conceptualizations of 

relatedness, but other conceptualizations—such as financial, or commodity relatedness—are inadequately 

measured by standard indices (Stimpert and Duhaime, 1997). If these other conceptualizations are 

systematically employed by managers in actual diversification moves (e.g. Prahalad and Bettis, 1986; 

Grant, 1988), our measure will reflect them. 

Basing a measure of relatedness on actual diversification patterns raises several important issues, 

however, which must be resolved. First, just because two industries have been combined in a portfolio by 

some firm does not mean it is a useful combination or that it should significantly influence the relatedness 

measure. Some combinations result from managerial experimentation or they arise for other 

unexplainable and unsystematic reasons (cf. Richardson, 1972). Furthermore, such “accidents” are more 

likely to occur when there are more trials. An industry in which many firms are active is more likely to be 

the site of such an accidental juxtaposition with a second industry than one that is sparsely populated. 

This issue is addressed by noting that the key to harnessing the information content in diversification is to 
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reliably detect when combinations of industries are occurring inside portfolios at rates greater than one 

would expect if diversification moves were made at random. Teece et al. (1994) use such an approach to 

develop a normalized measure of the frequency by which industrial activities are combined within 

diversified firms.  

Second, just because two activities appear together in some firm does not mean they are 

significantly related. Some very large portfolios contain relatively insignificant operations that may relate 

only to other minor activities in the portfolio. This second issue is addressed by weighting the normalized 

dyadic frequencies by the extent to which the two activities are both important in the overall economic 

picture of the firm. If an activity is insignificant whenever it is combined with a particular other activity in 

a portfolio, the dyad representing the combination should receive relatively less weight.  

Third, the fact that two activities are not found combined in a single firm at a particular time does 

not necessarily mean that scope economies are entirely absent or, certainly, that the particular 

combination should be left without a valuation in the relatedness measure. As suggested above there can 

be costs as well as benefits from combining two activities within the same firm. In some cases, the fact 

that two activities don’t appear in a firm may not indicate that there is nothing to be achieved by 

combining, but rather that the market provides a relatively effective means of combining relative to doing 

so within the firm (Teece 1980). The balance of costs and benefits may change over time, especially 

because some firms are gradually extending the scope of their capabilities.  Our measure includes a 

provision that fills in the relatedness picture in cases where the direct evidence of actual joint participation 

is entirely absent. This involves creating a network representation of the weighted relatedness distances 

between industry nodes and computing the shortest path score between nodes. This procedure yields 

relatedness scores based on proximity in the network for activities that are not combined in any firm, and 

may imply increased estimates of the relatedness in cases where there is such joint participation, but the 

number of firms displaying it is relatively small.  
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Our data is drawn from the Longitudinal Research Database (LRD) at the Center for Economic 

Studies (CES) at the U.S. Census Bureau. The LRD represents the most detailed and extensive body of 

data on the productive inputs and outputs of U.S. manufacturing establishments (plants). The LRD is 

utilized instead of other possible alternatives for two basic reasons: (1) The LRD contains reliable 

information at the four-digit SIC level for all the activities in which firms actually engage, and (2) it 

provides a measure of the share of value-added produced by each firm in each four-digit product 

category, which supplies a measure of economic value that can be used to weight dyad counts for their 

importance to the firm. Of course, finer levels of classification exist in the SIC system, such as five-digit 

and even seven-digit codes. These codes are less commonly known to non-CES users, however, and 

computational complexity makes their use for the index difficult. The index relies on four-digit SIC codes 

insofar as it treats them as meaningful categories of activity, but it does not rely on the hierarchical 

structure or other relatedness approaches that could be extracted from the codes themselves. The data also 

has the distinct advantage of supplying a census rather than a sample of firms; operating data on all multi-

unit firms that appeared in the 1987 Census of Manufactures (SIC 2000-3999) is included.9                            

3. Construction of the Index 

 
Step 1. Following Teece et al. (1994), take industries two at a time and count the number of 

multi-industry firms operating in both industries. To be explicit, let 1=ikC  if corporation k is active in 

industry i, and 0 otherwise. The number of corporations active in industry i is , and the 

number of corporations active in industry i and j is 

∑=
k

iki Cn

jk
k

ikij CCJ ∑= . Raw counts of the number of firms 

                                                 
9 A firm is defined as multi-unit when it operates two or more establishments with different primary four-digit SIC 
classifications. Excluded from the analysis are industries classified as “not elsewhere classified (n.e.c.)”—typically 
industry codes ending with a “9.”  These industries are “catch-all” categories containing a menagerie of products.  In 
some cases, products are difficult to classify within alternative categories; in other cases, they are misclassified.  
Including n.e.c. industries in the analysis could bias the index because the network optimization process would 
likely produce pathways through at least some of these industries, creating relatedness scores that are potentially 
spurious.    
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operating in each industry dyad, however, cannot be taken directly as a measure of relatedness. Activities 

must be present at a rate greater than what one would expect if corporate diversification decisions were 

made at random. Although Jij increases with the relatedness of i and j, it also increases with ni and nj, the 

number of firms operating in each industry of the dyad. Therefore, Jij must be adjusted for the number of 

firms that would appear in the dyad under the null hypothesis that industries are assigned to firms at 

random (cf. Teece, et al. 1994). 

To operationalize the null hypothesis, the distribution of Jij must be derived. For now, call this 

random variable xij .10 Under the null, the ni firms operating in industry i are simply one random sample 

from the population of K multi-industry firms. Now draw another sample of size nj and observe x, or the 

number of industries that were also in the ni sample. The number of ways of selecting x firms to fill x 

positions in sample nj is equivalent to the number of ways of selecting x from a total of ni firms, or 

.⎟
⎠
⎞⎜

⎝
⎛

x
ni 11 The number of ways of selecting firms not receiving assignment to industry i for the remaining 

(nj – x) positions in the nj sample is equivalent to the number of ways of selecting (nj – x) from a possible 

(K - ni) firms, or . Then the number of possible permutations of the n⎟
⎠
⎞

⎜
⎝
⎛

−
−

xn
nK

j

i
j sample is the number of 

ways of combining a set of x firms assigned to industry i (ni) multiplied by (nj – x) firms not assigned to 

industry i, or .⎟
⎠
⎞⎜

⎝
⎛

x
ni

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

xn
nK

j

i 12 The number of different samples of size nj that can be drawn from K is 

                                                 
10 Teece et al. (1994) identify the distribution, but they do not derive it in their paper.  We found it necessary to 
derive the distribution in order to check what turned out to be minor typos in the original publication.  Because 
doing so clarifies the set-up of the problem, we include the brief exposition here.  The article is reprinted, with most 
if not all of the errors corrected, in Langlois, et. al., eds. (2003). 

11 , or  is the number of combinations, or subsets, of size x that can be formed from n⎟
⎠
⎞⎜

⎝
⎛

x
ni in

xC i objects and is 

computed as 
)!(!

!
xnx

n

i

i

−
. 

12 Since sample nj was fixed as the number of firms operating in industry j, firms assigned to industry i in this 
quantity are de facto also assigned to industry j. 
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a sample of size nj is the probability that x firms from population K are assigned to both industry i and 

industry j.  Thus, given joint participation of size x in two industries of size ni and nj , the number Xij of 

corporations active in both industry i and industry j is a hypergeometric random variable 
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Calculation in terms of factorials will serve to verify that the reversal of indices i and j has no effect on 

the value, so the apparent asymmetry in (1) is superficial. The mean of Xij is 

  
K
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ijij == )(μ  (2) 

The variance of Xij is 
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ijij μσ .13 (3) 

When the difference between Jij and the expected value of the random variable xij is positive and large, it 

indicates systematic diversification by multi-industry firms into pairs of industries. The existence of pairs 

that are represented more frequently than suggested by the null necessarily implies a complementary set 

of relatively under-represented pairs. This does not imply some sort of negative relatedness, but only that 

                                                 
13Intuition for the mean of (1) is as follows.  Assume that nj firms in K have been assigned to industry j.  Now 

randomly assign firms in K to industry i.  The probability that any one firm receives an industry i assignment is 
K
ni .  

Since there are nj firms in K, each with probability 
K
ni  of being assigned to industry i, the expected number of firms 

assigned to both industry i and industry j is ⎟
⎠
⎞

⎜
⎝
⎛

K
nn i

j
.   For further information on the hypergeometric distribution, see 

Feller (1957). 
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the incentives to participate in such pairs are weak relative to the stronger forces affecting the over-

represented pairs. The difference between Jij and the expected value of xij is standardized as 

  
ij

ijij
ij

J
σ
μ

τ
−

= .  (4) 

 Step 2. Since Equation (4) is based on raw industry participation counts, it is a coarse measure of 

the extent to which activity combinations are economically important to the firm. The normalization 

process corrects for the frequency with which industry dyads occur across firms, but it does not reflect the 

economic importance of the dyad to the average firm operating in the dyad.  If an industry dyad is 

responsible for only a small fraction of the economic value produced by each firm that participates in it, it 

hardly seems reasonable to accord this joint participation the same weight as other combinations that are 

more important to the firms involved.  In a broadly diversified firm, two activities each delivering only 1 - 

2 percent of the firm’s value-added may be only weakly related, whereas two activities in a smaller firm 

that each deliver close to half of the value-added are likely related more strongly. If the pattern is 

consistent across all firms operating in two focal industries, then relatively lower or higher weights, as 

appropriate, should be assigned to the relatedness score of the dyad. This is what our index does. 

 The weight is determined by comparing for each dyad the relative proportions of total firm value-

added that are attributable to each activity of the dyad. The minimum of these two value-added 

proportions is then selected for each firm and averaged across all firms operating in the dyad. The 

minimum proportion is selected because it represents an “upper bound” measure of how closely related 

the two industries could be when they appear together. If industry A, having a value-added proportion of 

0.01, is combined with industry B, having a value-added proportion of 0.7, the 0.01 is selected to provide 

information on the importance of the dyad to that firm. In another firm with the same dyad, industry B 

could have the smaller proportion, in which case industry B’s proportion would be selected to provide the 

information. These minimum proportions are then averaged across all firms operating in the dyad to 

create the dyad weight. The average Sij produced by all firms operating in the dyad is  
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Scores in Equation (4) are then adjusted by the weights in Equation (5). Before weighting, the 

scores in (4) are converted to a distance matrix, a necessary setup for computing shortest path distances in 

Step 3. The distance matrix is computed by identifying the maximum τij among the set of normalized 

scores, and subtracting all scores from this value. In the distance matrix, low cell values mean high 

relative relatedness and zero represents the most related dyad. All other values are positive. Following 

this transformation, cell values in the distance matrix are divided, not multiplied, by (5). After weighting 

by (5), the resulting matrix can be evaluated as a network in which the values in matrix cells are the 

distances between nodes i and j. The network is comprised of industry vertices connected by arcs having 

weight (length) inversely proportional to relatedness. Every pair of industries found together in a 

diversified firm has a corresponding arc-length in the network. Note however that, at this stage, only the ij 

pairs combined empirically are directly connected, all others remain unconnected. If indirect connections 

are considered – such as i to k and k to j, or longer chains – then we find that the network as a whole is 

connected with the exception of three minor cases that are strict isolates, SIC 2386, 2371, 3263. These 

three industries are dropped from further consideration. 

 Step 3. To be useful as a tool for determining relatedness for any expansion option facing the firm, 

the measure should supply scores for all possible industry combinations, including those that are not 

observed in the timeframe for which the measure is constructed.  This issue is addressed by solving for 

the shortest path distance between every pair of nodes in the weighted distance matrix.14 The method 

                                                 

c

14 Computation of the shortest path through a network is a well-known problem and has a straightforward formal 
representation.  Consider a network consisting of industry node (vertices) set V and arc (edge) set E.  Each edge 

has cost Ee∈ w
e ijδ= , which is the weighted distance between industry nodes Vvv ji ∈, .  Consider one pair of 

nodes v1 and vk.  The total cost of a path EeVvvevevevPp iikkk ∈∈=∈ −− ,,112211 K  is the sum of the costs of the 
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produces a distance measure for dyads that are not directly connected in the network, and it substitutes a 

shortest path distance for a direct link between two industries when the path distance is shorter than the 

direct distance. The substitution also produces a measure that is, by construction, a legitimate “distance” 

in the mathematical sense underlying the concept of a metric space, namely, that the resulting relatedness 

scores satisfy the triangle inequality: d x( , ) ( , ) ( , )y d y z d z x+ ≥

                                                                                                                                                            

, where d(x,y) is the distance between x 

and y (Takayama, 1985). To illustrate, consider Figure 1, a representative network, where letters represent 

industry nodes and lines represent the arc-length distance between industries (the shorter the arc, the more 

related the industry). In the simple network of Figure 1, industry node A and node E are not connected 

directly, but node E can be reached along the shortest path ABE. The distance represented by ABE 

becomes the computed relatedness distance for AE. The shortest path calculation could also lead to the 

replacement of existing distances based on actual joint participation with shorter ones based on stronger 

indirect connections. 

 

-------------------------------------------Insert Figure 1 about here --------------------------------------- 

 

To complete construction of the index, the weighted distance matrix, which is now filled with 

shortest path scores, is converted to a similarities matrix, where the greatest values rather than the lowest 

values represent the highest relatedness. This is done simply by subtracting each computed path length 

score from the maximum computed path length, which implicitly sets the least related dyad to a value of 

zero and the most related dyad to some positive value. Following the similarities transformation, index 

scores are further transformed in two ways. In the first, the similarities score is standardized by 

subtracting the mean of the distribution from each value and dividing by the standard deviation. These 
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cedges on this path c .  The problem is to find the path P that begins at v1 and ends at vk such that c is a 

minimum. 
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scores are distributed approximately normally but the distribution has a long, left tail, implying that there 

are a number of dyads with very low relatedness. Normalized values, or z-scores, range from a low of -

7.00 to a high of 3.51 standard deviations from the mean. In the interest of interpretability, the relatedness 

scores are also transformed into a value that represents the cumulative area under the distribution and 

ranges between 0 and 100. Here the scores may be interpreted as a percentile. An index score of 70 

implies that 70 percent of industry dyads are less related than the focal score, while 30 percent are more 

related. Plots of the distribution of all normalized (not percentile) dyad relatedness index scores are shown 

in Figure 2. Note that Figure 2 represents only the distribution of raw scores between every industry pair. 

It does not represent the relatedness scores of industries inside firm portfolios.  

 

-------------------------------------------Insert Figure 2 about here --------------------------------------- 

A few examples of scores illustrate the ability of the index to capture relatedness relationships 

among industries; the examples also supply face validity. First, illustrating relatively low relatedness, SIC 

3264, “Porcelain Electrical Supplies,” and SIC 2421, “Sawmills and Planing Mills,” score near the zero 

percentile of relatedness (0.25 percentile) with a z-score of -4.69, suggesting that these activities share 

little in common.15 The relatedness here squares with what intuition might suggest; the advantage of the 

index is that it provides a precise relative measure in comparison to other dyads. The two most unrelated 

industries are SIC 2097, “Ice,” and SIC 2397, “Schiffli Machine Embroidery,” with a z-score of -7.0. In 

contrast, the two most related industries, receiving a z-score of 3.51 and a percentile rank of 100, are SIC 

2131, “Tobacco, Chewing and Smoking and SIC 2141, “Tobacco Stemming and Redrying.” The index 

seems to confirm intuition for these pairs of industries.  

                                                 
15 These two industries indicate the lowest relatedness outside of dyads that include SIC 2397, “Schiffli Machine 
Embroideries.” The latter SIC code accounts for all z-scores in a range lower than -4.69, down to -7.0. Apparently, 
this industry is less related to a higher number of dyads than all other industries.  Industry 2397 produces 
embroidered textile products using a Schiffli embroidery machine which was invented by Isaac Groebli of 
Switzerland in the late 1800s. The machine utilizes a continuously threaded needle and a shuttle containing thread. 
The shuttle looks similar to the hull of a sailboat. Thus, the machine garnered the name "Schiffli," which means 
"little boat" in the Swiss German language. 
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The index identifies numerous examples of very high levels of relatedness between pairs of 

industries that are different at the two-digit level within manufacturing. Hierarchy-based relatedness 

methods typically consider two-digit differences to be unrelated. As just one example, consider SIC 2951, 

“Paving Mixtures and Blocks,” and SIC 3273, “Concrete, Ready-Mixed.” The percentile rank here near 

100 (z-score 3.07) is not surprising given the category descriptions, yet none of the typical approaches to 

SIC hierarchy-based relatedness would have detected this relationship. A more interesting example is the 

percentile relatedness near 100 (z-score 3.04) between SIC 2542, “Metal Partitions and Fixtures” and SIC 

3581, “Automatic Vending Machines.” This high index score suggests that complementarities may exist 

in combining what appear on the surface to be disparate activities. Digging a bit deeper, it seems clear 

that knowledge about how to manufacture or distribute metal frames could be made applicable to 

manufacturing or distributing the frames on vending machines.   

 Consider an example of using the index to predict an expansion move. In 2003, Energizer 

Holdings, Inc., a battery manufacturer, acquired Schick-Wilkinson Sword, a safety razor manufacturer, to 

diversify its product line (“Energizer acquires Schick,” 2003). While the logic for this move is not 

immediately evident, Pat Mulcahy, chief executive officer of Energizer, supplies the following rationale:  

Schick-Wilkinson Sword is an attractive business in a category with dollar sales growth and 
stable margins that leverages our core competencies. . . . Energizer and Schick are very 
compatible, with many common customers, and similar distribution channels, high speed 
manufacturing and product innovation capabilities, and corporate cultures (“Energizer acquires 
Schick,” 2003). 

 

The CEO apparently used several resource categories and a complex logic in evaluating the 

relatedness between these two opportunities. If the CEO’s assessment is accurate, knowledge overlap 

exists between razors and batteries because they serve common customers, have similar distribution 

channels, use manufacturing technology with significant similarity, and share similar product innovation 

and corporate cultures. Use of any one of these resource categories to identify this opportunity may or 

may not have been successful. Thus, an important question is whether the general index developed here 

could have detected a priori this sort of non-obvious opportunity. The most likely classification for the 
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batteries manufactured by Energizer Holdings, Inc. and the safety razors manufactured by Schick-

Wilkinson Sword are SIC 3691, “Storage Batteries,” and SIC 3421, “Cutlery,” which includes safety 

razors, respectively. Although Census lumps alkaline cell batteries of the type manufactured by Energizer 

together with automobile lead acid storage batteries and also other types (which dilutes the focus of the 

category), and also lumps razor blades, scissors, and shears together with safety razors, the relatedness 

percentile between these industries is still 62 (z-score 0.31), a stronger relatedness than average, and 

stronger than one might expect a priori. The index uncovers relatedness between what appear to be 

unrelated industries, and yet the findings are consistent with a managerial logic that suggests the presence 

of complementarities in razors and batteries.  

These examples indicate that the index is doing at least part of what it was intended to do: 

Uncovering relatedness between pairs of industries, independent of the specific source of economies of 

scope. 

4. Test of Predictive Validity 

 The general relatedness index developed here is intended to be precisely that—general. The 

number of its potential applications is very broad. We select here just one specific and conservative 

application—an empirical context for which theory suggests that relatedness effects are likely to be 

particularly strong: the entry mode choice. This is a particular use of the general index which, as we 

argued above, captures multiple underlying bases of relatedness. Here we argue that an influential factor 

in the decision about whether to build or acquire as a mode of entry is the extent to which the firm holds 

knowledge that is specific enough to qualify it as the creator of a production function in a target market. 

This type of knowledge specificity in production is among the sets of possibilities for what may be 

causing firms to jointly participate in industries, and the index should therefore reflect it, even if only 

weakly among the alternative possibilities that motivate activity combinations. As applied here, the index 

is a proxy for shared, specific knowledge, where higher index scores indicate that more specific 

knowledge is common to two activities in view.  
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We establish in this brief exercise that the index has substantial predictive validity (understood as 

the degree to which a measure of a concept shows the expected statistical relationship with some 

recognized outcome (Lubatkin et al. 1993: 436)). This cross-industry exercise also illustrates the common 

situation in which the resources underlying “relatedness” cannot be consistently classified for all 

industries—requiring the kind of general index developed here. The results demonstrate the index’s 

usefulness as a general empirical tool, its predictive validity, and its advantages over alternative 

relatedness constructs based on SIC hierarchy. The results also validate the conceptual adjustments made 

to the Teece et al (1994) measure, which in its original form does not turn up as significant in our tests. 

Theory 

A firm’s choice about mode of entry cannot be made independent of the characteristics of 

knowledge in hand. Since a new establishment is presumptively an establishment without a production 

function, it is an asset that is likely to be attractive only to an investor capable of supervising the creation 

of the appropriate production function. The obvious candidate for the role is a firm that already possesses 

a similar production function in a similar establishment. The requisite coordinating information for 

productive activity is partly imported into the establishment in the skill sets and mental models of 

personnel, partly accumulated locally through learning-by-doing (with early productive efforts likely to 

yield more learning than product), and partly embodied in fragmentary form in the establishment itself. 

By contrast, a functioning establishment that has been “previously owned” when acquired is a real asset 

generating cash flows that can be reasonably estimated on the basis of past experience. Likewise, the firm 

may be the only entity qualified to build its new plant if this requires careful replication of highly 

technical knowledge and routines (Winter and Szulanski, 2001). When Intel Corporation must build a 

new fabrication facility, for example, the company does not go shopping for the facility on the open 

market. Instead it builds the facility using its own specific, highly technical knowledge. Similarly, Helfat 

and Lieberman (2002) argue that the greater the required resources and capabilities that firms possess 

prior to entry, the more likely they are to use internal growth, or build modes. Early work examining the 

choice of entry mode also suggested a positive correlation between the relatedness of existing activities 
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and the target industry (Yip, 1982). In contrast, when firms seek to leverage some pre-entry resources and 

capabilities but lack other critical, especially specific resources, they are more likely to choose entry by 

acquisition. Of course, if the acquiree is sufficiently distant from the acquiror’s knowledge base, or if the 

knowledge required to run the target is specialized, successful entry through acquisition may be difficult. 

Nevertheless, acquisition may be the only option when the firm lacks the specific knowledge that would 

make it an effective builder.16  

The maintained hypothesis underlying our test of predictive validity may be summarized as 

follows: Expanding firms that possess specific knowledge related to a focal market will typically choose 

to enter by building, rather than acquiring, a new establishment.  

Data and Methods 
 

The sample for the analysis includes all establishments from the LRD that were built or acquired 

by a continuing firm between the 1987 and the 1992 economic censuses. The plant must have been in a 

four-digit industry in 1992 in which the owning firm did not participate in 1987. The number of such 

establishments is 4,721. However, due to missing values for select covariates (e.g., industry R&D 

expenditures), the number of establishments included in the regression analysis is reduced to 1,706.17

The choice of entry mode is modeled as a dichotomous variable where 1 is entry by build, and 0 is entry 

by acquisition. A probit specification is utilized for the two-period panel. All manufacturing firms 

operating in 1987 that by 1992 had entered a new (four-digit) industry are considered. Theoretical and 

control variables are listed below. 

                                                 
16 Some plants may be built on behalf of the focal firm by specialist engineering firms who bring technical 
knowledge to get a “turnkey” plant up and running (e.g. Arora, Fosfuri and Gambardella, 2001). This phenomenon 
represents a kind of intermediate category between build and acquisition. To the extent that such instances exist in 
our data, they are coded as build. However, since specialist firms allow focal firms to build plants in industries that 
are actually further from their domain of expertise, the presence of these instances in our data will work against our 
results and thus makes our test more conservative. 
17 R&D intensity is calculated at the industry level based on COMPUSTAT (See Appendix). R&D-intensive 
industries are likely to require the development of specialized resources for effective competition.  Holders of specialized 
resources are more likely to enter by build. We thus view this variable as an important control on the findings. Running 
the analysis without the R&D intensity variable does not qualitatively change the results but clearly increases the 
number of observations in the regressions. Coefficients on relatedness and other theoretical variables were, as a 
result, more significant in these runs. We do not include those results here.  
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 Relatedness. Relatedness is measured in three different ways for comparison. The first measure is 

a naïve, two-digit measure, which is coded 1 if in 1987 the entering firm owned establishments operating 

in the same two-digit industry as the 1992 entered industry, and coded 0 otherwise. Inclusion of this 

variable supplies a basic test of whether the relatedness component of entropy or the concentric measure 

is able to distinguish entry mode, since the relatedness in these measures is based on shared hierarchy 

within the SIC system. The second approach is the Teece et al. (1994) measure identified by Equation (4) 

above, which provides a basic test of whether the adjustments made to convert the measure into a general 

relatedness index are effective. The third measure is the general relatedness index. Each of these measures 

approximates the relatedness to the target industry of the most related other industry in the portfolio. A 

positive sign is expected on relatedness coefficients, indicating that relatedness increases the probability 

of a build choice.  

 Coherence. Coherence (Teece et al., 1994) is defined as the employee-weighted average value of 

the relatedness of activity dyads on the maximum spanning tree of a firm’s activity portfolio. In essence, 

it is the average relatedness of each industry linked to its closest other industry in the portfolio. In that 

regard it is in one sense a portfolio-level, related diversification measure. Knowledge-based theorizing 

suggests that firms enjoying very tight coherence in their activity set would be more likely to possess and 

deploy specific knowledge in entry decisions. The converse is also true. Less coherent firms are more 

likely to deploy general knowledge, such as in acquisition (Montgomery and Wernerfelt, 1988). Thus, 

exclusion of this variable could confound the independent effects of knowledge specificity to the target 

industry. 

Experience. The length of experience in a general area is coarsely defined as the number of years 

of operating experience in the two-digit industry in which the target four-digit industry is found. Although 

we limit the sample to four-digit industries in which the firm has never operated, the firm may have 

operated in the two-digit class of that industry. We sum years of experience in the two-digit industry since 

the 1963 Census. This provides a further control on the relatedness variable since it proxies the 

23 



knowledge the firm may have already acquired through accumulated experience in activities close to the 

target.  

Following standard approaches to modeling entry (Geroski, 1991), controls for firm size and 

industry structure (industry growth, concentration, asset intensity, profitability, build propensity, and 

R&D intensity) are also included (See Appendix for a detailed description). Pearson correlation 

coefficients for all variables are shown in Table 3. 

 

-------------------------------------------Insert Table 3 about here --------------------------------------- 

 

Results 

Results of the probit regression analyses are shown in Table 4. Strong support is found for 

effectiveness of the general index as a predictor of choice of mode of entry—it is highly significant at 

p<0.001. Model 4, which incorporates the general relatedness index, performed the best overall.  

 

-------------------------------------------Insert Table 4 about here --------------------------------------- 

 

Only the general relatedness index shows statistical significance in this analysis. Other indicators, 

including the two-digit measure and the Teece et al (1994) measure of Equation (4), were not significant. 

As it pertains to the index, this result clearly indicates that the method of value-added conditioning and 

shortest path search contributes important information to the task of assessing relatedness. The general 

index differentiates between situations favoring build and acquire entry modes whereas the other 

measures do not – at least, not in the presence of the control variable we employ.  

Control variables coherence, firm size, and the proportion of new (startup) firms that build versus 

acquire in the target industry (a measure of propensity to build which may reflect complexity of 

knowledge in the particular industry) were highly significant in the expected direction. Experience, pre-
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entry industry growth rate, asset intensity, average plant profitability, and R&D intensity were significant 

but less so, and experience and concentration were marginally or not significant, depending on the model. 

Findings on control variables suggest the models effectively control for the influence of relatedness on 

mode of entry.        

Predictive validity summary 

The net result of the predictive validity assessment is that the proposed relatedness measure 

shows the expected statistical relationship with the recognized outcome of building rather than acquiring. 

This result is obtained with the general index and is not based on whether a firm is entering from an 

industry that shares the same two-digit class, nor is it obtained with the construct of Equation (4) alone.    

 
5. Discussion 

 

This section briefly discusses some limitations of the general index and also some possible 

applications of the index in corporate strategy, and longitudinal research.  

Limitations 

The general relatedness index should be a useful tool for assessing inter-industry relatedness in 

virtually any context requiring such a measure. One limitation, however, is that the version of the index 

developed here only provides relatedness scores for industries in the Manufacturing sector. Additionally, 

the index is based on multi-product organization and diversification as it existed in 1987. As industries 

change and technology develops, the relatedness relationships between industries may also change. 

Nevertheless, given the methodology of statistical normalization, value-added weighting and averaging, 

and shortest path search, the relationships developed here are expected to be stable and durable, making 

the index useful for general questions performed on data existing before or after the 1987 construction 

year. An additional virtue of the index is that it need not be computed anew each time it is used. Its strong 

empirical base—all diversified firms in the US economy of any size—makes repeated construction costly 
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and difficult.18 Hence, the authors are making the index generally available to academic researchers. 

Needless to say, however, an effort to recalculate the index on the basis of more recent data would be 

welcome, and would afford some direct insight into the stability of the patterns captured by it.    

Applications 

 The potential applications of the index are broad, but the index holds particular promise in studies 

of firm expansion and diversification, where it offers new empirical content for theoretical logic based on 

the resource-based view of the firm. Some specific areas of promise are identified below. 

 Related vs. Unrelated Diversification. Using the index, it is possible to construct detailed profiles 

of firm portfolios and fine-grained measures of relative relatedness among all industrial activities in each 

portfolio. Examination of intra-portfolio relationships at a micro level with a more fine-grained 

relatedness measure has the potential to provide additional insights into familiar questions about the links 

between diversification strategy and performance. For example, aside from the related-unrelated 

dichotomy, are some particular portfolio configurations more advantageous to performance than others? 

Similarly, how does the positioning of particular activities inside the portfolio impact the performance of 

those activities? Do activities that are more central in the intraportfolio relatedness “network” perform 

better (or persist longer) than those that lie on the periphery? Since certain activities come to share 

knowledge, capabilities, and resources by virtue of their similarities inside the firm, one would expect 

positive performance effects to exist between closely related industrial activities inside the portfolio. 

Activities that are deeply embedded in a relatedness sense within the portfolio of an evolving firm are 

more likely to experience spillovers in knowledge, resources, and capabilities from multiple sources (Tsai, 

2000), potentially leading to positive performance effects. 

Longitudinal Strategy Research. Emerging strategic theory draws heavily on Penrose’s Theory of 

the Growth of the Firm (1959) to explain the direction of expansion, the development of capabilities, and 

                                                 
18 We have constructed the index using only publicly available firms available in the Compustat Segment files but 
found generally weak correlation to the general index.  
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the role of knowledge in the growth of the firm. Fundamentally, such theories are about firm growth and 

therefore, in a diversified firm, require longitudinal assessments of market entry choices. Yet, perhaps 

surprisingly, there are a limited number of empirical studies in the literature that take this perspective. No 

doubt the lack of good tools for assessing patterns of longitudinal expansion choices has been a prime 

contributor to the deficit. A number of interesting questions remain to be explored. For example, do firms 

that make repeated series of short leaps into new markets outperform or underperform firms that make 

longer leaps? What determines which opportunities can profitably be seized by which firms? Do firms 

that appear to repeatedly leverage a core strength in some industry into other related industries perform 

better or worse than firms that operate from multiple capability platforms simultaneously? How do 

capabilities evolve in the multiunit firm as a function of market entry? Does the rate of development in 

these capabilities have anything to do with performance? We expect that, with the help of the general 

index introduced here, researchers will be able to tackle longitudinal questions such as these with renewed 

vigor.  
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APPENDIX 

Size of the parent firm is computed as the natural log of the total value of shipments (TVS) for the 
firm across all its industry operations in 1987.  We expect a negative sign on the coefficient of size since large 
firms are more likely to acquire given greater access to external financial resources (Chatterjee & Singh, 
1991). 
            Pre-entry industry growth rate is a measure of industry attractiveness.  It is measured in 1987 as the 
total industry growth in TVS since the 1982 economic census in order to capture the growth rate faced by 
firms at the beginning of the period under study (1987-1992).  A rapidly growing industry is likely to attract 
firms from afar who are interested in investing even without the industry-specific resources.  But because the 
industry is growing rapidly, there are likely to be few firms available for acquisition, especially at a price less 
than the future discounted rent stream.  Thus, we expect that in rapidly growing industries, much of the 
growth is fueled by internal development by firms possessing the right resources and this provides a further 
control on relatedness.    

Four-firm concentration ratio measures industry concentration for the four largest firms in the 
industry as the industry proportion of total value of shipments accounted for by these firms.  We expect 
higher concentration ratios to be associated with oligopolistic rivalry conditions, larger average firm size and 
higher barriers to entry.  If the largest firms control a significant portion of the capacity in the industry, then 
entering firms may need to acquire to gain a foothold—i.e. the sign on the coefficient is expected to be 
negative. 

Industry asset intensity measures the capital requirements for entrants.  It is calculated as the natural 
log of industry investments in plant & equipment in 1992.  On the one hand, intensive capital requirements 
may suggest that large firms with deep pockets will tend to enter by acquisition.  On the other hand, it may be 
the case that intensive capital requirements are the sorts that require specific knowledge—such as in highly 
technical industries requiring heavy expenditures in R&D.  Thus, rationale for sign of either direction can be 
developed and we make no prediction about the sign of this variable.  

Industry profitability is a measure of industry attractiveness determined as the average plant-level 
profitability in the industry, which is computed as value added (less labor) divided by total value of shipments 
(TVS) in 1992—conceptually the profit potential entrants can hope to earn per plant.  We expect profitability 
to attract well-financed entrants who are conducting broad search for profitable opportunities.  Thus, we 
expect that entrants will be induced to acquire in hopes of purchasing the cash flow stream as early as 
possible.  This implies that the sign will be negative. 

Industry build propensity is calculated as the ratio of new (startup) firms that build vs. acquire and is 
a relative measure of the extent to which entry by build is straightforward in the industry, perhaps owing to 
the particular technology required for success.  For example, in some industries, knowledge required for 
successful production may be so general, and start-up costs so low, that firms nearly always build rather than 
acquire establishments, even when acquirable establishments are available.  Using this measure as a control 
also serves as a proxy for other potentially unobserved determinants of the propensity to build in the industry 
and ensures that remaining effects of differences in build and acquire are owing to theoretical variables (and 
other controls).  We expect a positive sign. 

R&D intensity is the extent to which research and development (R&D) is a factor in a particular 
industry and is measured as average R&D expenditures over total revenues from COMPUSTAT for 1992 in 
each four-digit industry.  Unfortunately, not all four-digit industries identified in the LRD are found in 
COMPUSTAT.  When a four-digit value was not available, and where possible, we utilized the average R&D 
intensity at the three-digit level.  Even after this adjustment, however, a number of establishments could not 
be matched on an R&D intensity score.  This effectively reduced the set of industries analyzed to those in 
which R&D is a factor.  R&D-intensive industries are likely to require the development of specialized 
resources for effective competition.  Holders of specialized resources are more likely to enter by 
build.  Therefore, we expect a positive sign on the coefficient. 
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Table 1: Select Diversification Measures 

 
Measure Mathematical Form Empirical 

Base 
Relatedness Component Primary usage Source 

1. Herfindahl 
Index  ∑

=

−=
n

i
isD

1

21  

where n = number of 
activities in portfolio and s 
= each activities’ share 

Patterns of 
firm revenues 
within 
portfolio 

None in standard measure. 
Gollop and Monihan (1991) 
insert Euclidean distances 
among product class input 
shares 

Diversification 
research; e.g. Berry, 
1971, 1975; 

Berry, 1971 

2. Entropy 
,)1ln(

1
i

n

i
i ssD ∑

=

=  

where si is the share of 
sales in segment i. 

Patterns of 
firm revenues 
within 
portfolio; SIC 
hierarchical 
structure 

Entropy calculated 
separately for 2- and 4-digit 
industries; difference in 
these scores is relatedness. 

Diversification 
research; e.g. 
Palepu, 1985 

Jacquemin and 
Berry, 1979 

3. Wrigley-Rumelt 
categorizations  

Categorization into one of 
nine categories based on 
three ratios: specialization, 
vertical, and related  

Patterns of 
firm revenues 
within 
portfolio 

Business is related if 
revenue from largest group 
of related activities (defined 
by researcher) is greater 
than 70 percent (related 
ratio) while no single 
industry’s revenue is greater 
than 70 percent 
(specialization ratio) 

Diversification 
research 

Wrigley, 1970; 
Rumelt, 1974 

4. Concentric 
,  

1

1 1
∑ ∑
−

= +=

=
n

i

n

ij
ijji rssD

where s is the percentage 
sales in industry i or j, and 
rij = 0 if i and j have the 
same three-digit code, 1 if 
they have identical two-
digit codes (but not three-
digit), and 2 if they have 
different two-digit codes  

Patterns of 
firm revenues 
within 
portfolio; SIC 
hierarchical 
structure 

Based on distances in the 
hierarchy of the SIC system; 
pairwise relatedness 
decreases as codes share 
only the same 3-digit, the 
same 2-digit, or different 2 
digit codes, respectively 
 

Diversification 
research; e.g. 
Montgomery and 
Wernerfelt, 1988 

Caves, Porter and 
Spence, 1980 
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Table 2. Select Relatedness Measures 
 

Measure Mathematical Form Empirical 
Base 

Relatedness Component Primary usage Source 

1. Scherer input-
output matrix-
based 

,cos
yx
yx ⋅

== θR
 

where cos θ is the Pearson 
correlation coefficient between 
industry categories x and y, 
which are centered vectors of 
technology inflows from all 
other industry categories 

R&D flows 
based on 
patent 
usage data 

Based on similarity between 
profiles of technology 
inflows 

Tests of the 
resource-based view 

Robins and 
Wiersema, 
1995; 
Scherer, 1982 

2. Occupational 
categories 

,  )( 2
,,∑

∈

−=
Kk

kjkiij yxR

where x, y are the normalized 
values of percent employees 
falling into occupational class k 
in industries i and j. These 
distances are further clustered 
into related industry groups 
(RIGs) 

Occupa-
tional 
classes 

Based on similarity between 
occupational classes 
between industries 

Tests of the 
resource-based view 

Farjoun, 1990, 
1994 

3. Technological 
distance 
(patents) 

( ) ,|Pr ic
c

ij NciR ∑=  

where relatedness of firm i to 
industry j is a sum across patent 
classes c of the probability that 
patents of class c are assigned to 
industry i , multiplied by the 
number of firm patents in each 
class 

Patents Based on assignments made  
by the Canadian Patent 
Office of patents to 
industries of likely use, 
which in turn are matched to 
the US SIC system using 
Silverman’s (1996) U.S. 
Patent Class—U.S. SIC 
concordance 

Tests of the 
resource-based view 

Silverman,  
1996, 1999 

4. Present Measure  
,

ij

ijij
ij

J
σ

μ
τ

−
=

 

where J is the count of the 
number of firms diversifying 
into industries normalized using 
the hypergeometric distribution; 
τ is converted to a weighted 
distance matrix and shortest path 
scores through this matrix 
become inter-industry 
relatedness measures 

All 
diversificati
on moves 
in the US 
manufac-
turing 
economy 

Implicit in methodology and 
arising from economy of 
scope arguments 

Tests of the 
resource-based 
view; examination 
of longitudinal 
expansion decisions 

Present study 
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Figure 1. A sample network 
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Figure 2. All interindustry relatedness scores: Four-digit SIC 
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Table 3. Pearson correlation coefficients and descriptive statistics 

 Variable Mean  S.D.  1 2 3 4 5 6 7 8 9 10 11 12 
1 Operations in two-digit industry in previous census 0.71  0.46  1            
2 Teece et al (1994) and Eq. (4) 12.2  8.96  *0.42 1           
3 General relatedness index 81.9  7.51  *0.30 *0.42 1          
4 Firm coherence 73.7  7.94  0.01 *0.12 *0.07 1         
5 Years of two-digit experience 18.1  11.81  *0.54 *0.32 *0.20 *0.15 1        
6 Ln (parent size) 12.9  1.8  *0.23 *0.18 *0.14 *0.14 *0.34 1       
7 Pre-entry industry growth rate 0.09  0.24  -0.02 -0.01 *0.07 0.03 0.01 0.04 1      
8 Four-firm concentration ratio 0.35  0.2  0.00 0.00 *-0.18 -0.04 0.01 *0.19 *-0.14 1     
9 Asset intensity 14.7  1.11  *-0.09 *0.16 *0.19 0.01 -0.02 -0.02 *0.07 *-0.08 1    

10 Average plant profitability in industry 0.16  0.32  -0.04 -0.04 -0.04 0.03 -0.02 0.01 -0.04 *0.08 0.00 1   
11 Proportion of startups that build vs. acquire 0.73  0.18  -0.02 *-0.17 *0.08 *-0.12 *-0.15 *-0.11 0.03 *-0.33 *-0.08 -0.02 1  
12 Industry R&D expense over net sales 0.02  0.03  -0.04 *-0.06 *-0.12 *-0.17 *-0.13 0.06 -0.01 *0.14 0.04 0.04 *0.10 1 
*=p<0.01 
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Table 4. Probit regression results for entry mode choice (build = 1) 
Variable Description (1) (2) (3) (4) 
Establishment     

Operations in two-digit industry in 
previous census 

 0.0677
0.0838

   

Teece et al (1994) and Eq. (4)   0.0045
0.0038

  

General relatedness index    0.0141
0.0045

** 

Firm     
Firm coherence 
 

 0.015 ***
0.004

0.014
0.004

*** 0.014
0.004

***

Years of two-digit experience 
 

 0.005  
0.003

0.006
0.003

* 0.005
0.003

* 

Ln (parent size)  -0.169 ***
0.018

-0.196
0.020

*** -0197
0.020

*** -0.204
0.020

***

Industry     
Pre-entry industry growth  0.302

0.133
* 0.304 * 

0.134
0.305
0.134

* 0.291
0.134

* 

Four-firm concentration ratio  -0.291
0.174

* -0.211  
0.176

-0.202
0.176

 -0.140
0.178

  

Asset intensity (includes building and 
machinery)  

0.075
0.029

* 0.079 ** 
0.029

0.072
0.029

* 0.059
0.029

* 

Average plant ‘profitability’ in 
industry  

-0.192
 0.108

* -0.199 * 
0.111

-0.197
0.111

* -0.199
0.112

* 

The proportion of new (startup) firms 
that build vs. acquire 

0.957
0.120

*** 1.09 ***
0.201

1.123
0.202

*** 1.042
0.202

***

Industry R&D expense over net sales 1.718  
1.285

2.785 * 
1.313

2.812
1.314

* 3.217
1.324

* 

Intercept 0.390  
0.530

-0.699  
0.608

-0.582
0.606

 -1.376
0.649

* 

-2logL (full model) 2199.41 2179.88 2179.17 2170.90 
(*) = p<0.01, (**) = p<0.001, (***) = p<0.0001 
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